WebSocket kernel wire protocols#
The Jupyter Server needs to pass messages between kernels and the Jupyter web application. Kernels use ZeroMQ sockets, and the web application uses a WebSocket.
ZeroMQ wire protocol#
The kernel wire protocol over ZeroMQ takes advantage of multipart messages, allowing to decompose a message into parts and to send and receive them unmerged. The following table shows the message format (the beginning has been omitted for clarity):
… |
0 |
1 |
2 |
3 |
4 |
5 |
… |
---|---|---|---|---|---|---|---|
… |
header |
parent_header |
metadata |
content |
buffer_0 |
buffer_1 |
… |
See also the Jupyter Client documentation.
Note that a set of ZeroMQ sockets, one for each channel (shell, iopub, etc.), are multiplexed into one WebSocket. Thus, the channel name must be encoded in WebSocket messages.
WebSocket protocol negotiation#
When opening a WebSocket, the Jupyter web application can optionally provide a list of subprotocols it supports (see e.g. the MDN documentation). If nothing is provided (empty list), then the Jupyter Server assumes the default protocol will be used. Otherwise, the Jupyter Server must select one of the provided subprotocols, or none of them. If none of them is selected, the Jupyter Server must reply with an empty string, which means that the default protocol will be used.
Default WebSocket protocol#
The Jupyter Server must support the default protocol, in which a kernel message is serialized over WebSocket as follows:
0 |
4 |
8 |
… |
offset_0 |
offset_1 |
offset_2 |
… |
---|---|---|---|---|---|---|---|
offset_0 |
offset_1 |
offset_2 |
… |
msg |
buffer_0 |
buffer_1 |
… |
Where:
offset_0
is the position of the kernel message (msg
) from the beginning of this message, in bytes.offset_1
is the position of the first binary buffer (buffer_0
) from the beginning of this message, in bytes (optional).offset_2
is the position of the second binary buffer (buffer_1
) from the beginning of this message, in bytes (optional).msg
is the kernel message, excluding binary buffers and including the channel name, as a UTF8-encoded stringified JSON.buffer_0
is the first binary buffer (optional).buffer_1
is the second binary buffer (optional).
The message can be deserialized by parsing msg
as a JSON object (after decoding it to a string):
msg = {
"channel": channel,
"header": header,
"parent_header": parent_header,
"metadata": metadata,
"content": content,
}
Then retrieving the channel name, and updating with the buffers, if any:
buffers = {
[
buffer_0,
buffer_1
# ...
]
}
v1.kernel.websocket.jupyter.org
protocol#
The Jupyter Server can optionally support the v1.kernel.websocket.jupyter.org
protocol, in which a kernel message is serialized over WebSocket as follows:
0 |
8 |
16 |
… |
8*offset_number |
offset_0 |
offset_1 |
offset_2 |
offset_3 |
offset_4 |
offset_5 |
offset_6 |
… |
---|---|---|---|---|---|---|---|---|---|---|---|---|
offset_number |
offset_0 |
offset_1 |
… |
offset_n |
channel |
header |
parent_header |
metadata |
content |
buffer_0 |
buffer_1 |
… |
Where:
offset_number
is a 64-bit (little endian) unsigned integer.offset_0
tooffset_n
are 64-bit (little endian) unsigned integers (withn=offset_number-1
).channel
is a UTF-8 encoded string containing the channel for the message (shell, iopub, etc.).header
,parent_header
,metadata
, andcontent
are UTF-8 encoded JSON text representing the given part of a message in the Jupyter message protocol.offset_n
is the number of bytes in the message.The message can be deserialized from the
bin_msg
serialized message as follows (Python code):
import json
channel = bin_msg[offset_0:offset_1].decode("utf-8")
header = json.loads(bin_msg[offset_1:offset_2])
parent_header = json.loads(bin_msg[offset_2:offset_3])
metadata = json.loads(bin_msg[offset_3:offset_4])
content = json.loads(bin_msg[offset_4:offset_5])
buffer_0 = bin_msg[offset_5:offset_6]
buffer_1 = bin_msg[offset_6:offset_7]
# ...
last_buffer = bin_msg[offset_n_minus_1:offset_n]